
International Journal of Computer Applications in Engineering Sciences

[VOL III, ISSUE I, MARCH 2013]
[ISSN: 2231-4946]

29 | P a g e

Studying Main Differences between Multilevel

Queue (MLQ) and Multilevel Feedback Queue

(MLFQ)
K. Kala Bharathi

Department of Computer Science, St. Pious X Degree & P. G. College for Women,

Nacharam, Hyderbad-500 076, India

kala_bharathi31@yahoo.com

Abstract- Comparisons between the Multilevel Queue and

Multilevel Feedback Queue CPU scheduling algorithm. It

is a long time running discussion in scheduling algorithms

to decide which of the processes in the ready queue is to be

allocated the CPU first. However there exist some

problems with these algorithms when facing the fast

growth of real-time systems and handhelds, in which

requirements for interactivity and the growth of system

loads need to be taken into corresponding consideration

and in my approach I proposed which is best.

Keywords- CPU scheduling, Quantum, Burst time

I. INTRODUCTION

When a computer is multi programmed, it

frequently has multiple processes competing for the

CPU at the same time. This situation occurs whenever
two or more processes are simultaneously in the ready

state. If only one CPU is available, a choice has to be

made which process to run next. The part of the

operating system that makes the choice is called the

scheduler and the algorithm it uses is called the

scheduling algorithm [1].

 In a single-processor system, only one process can

run at a time, any others must wait until the CPU is free

and can be rescheduled. The objective of

multiprogramming is to have some process running at

all times, to maximize CPU utilization [2]. Many criteria

have been suggested for comparing CPU scheduling
algorithms. Which characteristics are used for

comparison can make a substantial difference in which

algorithm is judged to be best in CPU Utilization,

Throughput, Turnaround time and Response time [2].

 A. CPU utilization

We want to keep the CPU as busy as possible.

Conceptually, CPU utilization can range from 0 to 100
%. In a real system, it should range from 40 % (for a

lightly loaded system) to 90 % (for a heavily used

system).

B. Throughput:

If the CPU is busy executing processes, then work

is being done. One measure of work is the number of

processes that are completed per time unit, called

throughput.

C. Turnaround time:

The interval from the time of submission of a

process to the time of completion is the turnaround time.

Turnaround time is the sum of the periods spent waiting

to get into memory, waiting in the ready queue,

executing on the CPU, and doing I/O.

D. Waiting time:

Waiting time is the sum of the periods spent waiting

in the ready queue.

E. Response time:

In an interactive system, turnaround time may not

be the best criterion. Often, a process can produce some

output fairly early and can continue computing new

results while previous results are being output to the
user. Thus, another measure is the time from the

submission of a request until the first response is

produced. This measure, called response time, is the

time it takes to start responding, not the time it takes to

output the response. The turnaround time is generally

limited by the speed of the output device [2]. It is

desirable to maximize CPU utilization and throughput

and to minimize turnaround time, waiting time, and

response time. In most cases, we optimize the average

measure. However, under some circumstances, it is

desirable to optimize the minimum or maximum values

rather than the average. For example, to guarantee that
all users get good service, we may want to minimize the

maximum response time [2].

Among these entire things Multilevel queue

algorithm (MLQ) and Multilevel Feedback queue

(MLFQ) differ in Level of priority, time quantum and

K. Kala Bharathi

30 | P a g e

allocating of jobs. Comparisons of these two scheduling

algorithms tend to reflect their origins and their

representation.

II. ESSENTIAL DIFFERENCES BETWEEN MULTILEVEL

QUEUE (MLQ) AND MULTILEVEL FEEDBACK

QUEUE (MLFQ)

1.In Multilevel queue (MLQ) processes are classified

into different groups. For example, common division is

made between foreground (interactive) processes and

background (batch) processes which have different

response time and scheduling needs. In addition

foreground processes may have priority over

background [2].

But, in Multilevel Feedback queue (MLFQ), it

contains two queues, lower-priority queues and higher-

priority queues. In this the separation of processes are

done according to the characteristics of their CPU

bursts.

2. In Multilevel queue (MLQ) the processes are

permanently assigned to one queue based on their

memory size, process priority or process type.

In Multilevel Feedback queue (MLFQ) it allows a

process to move between the queues, according to the

characteristics of their CPU burst.

3. In Multilevel queue (MLQ) the foreground queue

might be scheduled by Round Robin algorithm while the

back ground queue is scheduled by First Come First

Serve algorithm. There is possibility of starvation.

But in Multilevel Feedback queue (MLFQ) if a

process uses too much CPU time it will be moved to a

lower-priority queue. This schema leaves I/O bound and

interactive processes in the higher priority queues. In
addition, a process that waits too long in a lower priority

queue may be moved to a higher-priority queue

preventing starvation.

III. EXAMPLES

Multilevel queue (MLQ) algorithm with five queues,

listed below with order of priority:

a) System processes

b) Interactive processes

c) Interactive editing processes

d) Batch processes

e) Student processes
Algorithm chooses the process from the occupied

queue that has the highest priority, and run that process

either Preemptive or Non-preemptively

Each queue has its own scheduling algorithm or policy.

Possibility-I

Each queue has absolute priority over lower-priority

queues then no process in the queue could run unless the

queues for the highest-priority processes were all empty.

For example, in the below Fig. 1 no process in the

batch queue could run unless the queues for system

processes, interactive processes and interactive editing

processes will all empty.
 Possibility-II

If there is a time slice between the queues then each

queue gets a certain amount of CPU times, which it can

then schedule among the processes in its queue. For

instance;

 80% of the CPU time to fore ground queue

using Round Robin (RR).

 20% of the CPU time to back ground queue

using First Come First Serve (FCFS).

Since processes do not move between queues so, this

policy has the advantage of low scheduling overhead,

but it is inflexible.

 Highest priority

Lowest priority

Fig. 1: Multilevel queue scheduling

No process in the batch queue could run unless the

queue for system processes and interactive processes

were all empty. If an interactive process enters the ready

queue while a batch process was running, the batch

would be preempted

Now we will see the example to explain multilevel

feedback queue (MLFQ). It contains three queues

numbered from 0 to 2.

 Three queues:

 Q0 - Round Robin (RR) with time quantum 8

milliseconds

 Q1 - Round Robin (RR) time quantum 16

milliseconds

 Q2 - First Come First Serve (FCFS)

 Scheduling

 A new job enters queue Q0 which is served Q2.

When it gains CPU, job receives 8

milliseconds. If it does not finish in 8

milliseconds, job is moved to queue Q1.

System processes

Interactive processes

Interactive editing Processes
Batch processes

Student processes

Studying Main Differences between Multilevel Queue (MLQ) and Multilevel Feedback Queue (MLFQ)

31 | P a g e

 At Q1 job is again served Q2 and receives 16

additional milliseconds. If it still does not

complete, it is preempted and moved to queue.

Fig. 2: Multilevel feedback queues

IV. CONCLUSION

Multilevel Feedback Queue (MLFQ) is interesting

because instead of demanding a priori knowledge of the

nature of a job, it instead observes the execution of a job

and prioritizes it accordingly. In this way, it manages to

achieve the best of both worlds, it can deliver excellent

overall performance (similar to SJF/STCF) for short-

running interactive jobs, and is fair and makes progress

for long-running CPU-intensive workloads. For this

reason, many systems, including BSD UNIX derivatives
[LM+89, B86], Solaris [M06] and Windows NT and

subsequent Windows operating systems [CS97] use a

form of MLFQ as their base scheduler.

ACKNOWLEDGMENT

I thankful to The Principal, St. Pious X Degree &

P.G. College for Women for providing literature

facilities and also I thankful to my colleagues for

encouraging me in this work.

REFERENCES

[1] S. Andrew Tanenbaum, Modern Operating Systems, 2nd ed.,

Prentice-Hall of India Private Limited, New Delhi

[2] Abraham Silberschatz, Peter Baer Galvin and Greg Gagne,

Operating System Concepts, 7th ed., John Wiley & Sons (Asia)

Pvt. Ltd., Singapore.

