
International Journal of Computer Applications in Engineering Sciences

[VOL I, ISSUE IV, DECEMBER 2011] [ISSN: 2231-4946]

440 | P a g e

Font Level Tainting: Another Approach for

Preventing SQL Injection Attacks
V. Krishna Pratap¹, S. Tulasi Prasad², Ch. Srinivasa Rao³

12
Computer Science and Enginnering, JNTU Kakinada, Chaitanya Engineering College, Visakhapatnam, Andhra

Pradesh. India
3
Computer Science and Enginnering, JNTU Kakinada, Sri Sarathi Institute Of Engineering And Technology,

Nuzvid, Krishna Dt, Andhra Pradesh. India.

1
pratapv9@gmail.com,

2
tulasiprasadsariki@gmail.com,
3
srinivascsitengg@gmail.com

Abstract- the font level tainting is the another new

approach for preventing sql injection attacks, that involves

comparing the meta strings library with the sql statements

that includes the characters including the different font

levels in the user input, to prevent them if found any and

protecting the web applications against sql injection is

discussed in this paper. this paper includes the strange idea

of combining the declarative method and the quest method.

sql injection is the main problem that occurs with web

application security. it gives the attackers unauthorized

access to the database containing the web applications

which in turn leads to the cause of defects in the web

applications. this is very serious. in declarative method

point of view, it exhibits detection mode for sql injection,

that uses the coupled way routing arrangement of amino

acid code formulated from web application form

parameter sent via the web server. on the other hand from

the quest method point of view, it analyzes the transaction

to find out the malicious access. in declarative method it

uses an approach called schatten algorithm, not only to

prevent the sql injection attacks, but also reduces the time

and space complexity. this system was able to stop all of the

successful attacks

Keywords— sql injection, security, prevention, declarative

method, schatten algorithm, dbms quest

I. INTRODUCTION

 The modern web world always expects the

organization to concentrate more on providing the

security on web application. The Dangerous situation

faced by all the organizations is to protect their most

valuable data against malicious access, Interrupts and

corruptions, i.e. the Attacks. The developers of the

programs will have to show their keen interest in

developing the applications with usability than

combining the security policy rules. The major security

issue is an Input validation issue, if an attacker finds that

an application makes unfounded assumptions about the

type, length, format, or range of input data. Then the

attacker can furnish a malicious input which

compromises an application. The public interfaces

exposed by an application become the only source of

attack, when a network and host level entry points are

fully secured. The SQL Injections attacks, Buffer

Overflow attacks and cross site scripting attacks, are the

major threat in the web application security through this

input validation security issues [11]. The SQL Injection

attacks breach the database mechanism such as

Integration, Authentication, Availability and

authorization [8]. There are many number of total cyber

vulnerabilities in the Web world which are input

validation vulnerabilities.

 Since 2002, nearly 20% of the input validation

issues are SQL Injection vulnerabilities (SQLIV‟s) and

therefore, 10% of total cyber vulnerabilities. SQL

injection attacks involve placing SQL statements in the

user input for corrupting or accessing the Database [11].

Even the SQL Injection attacks can bypass the security

mechanism such as Firewall, cryptography and

traditional Intrusion detection systems. If the trend of

providing web-based services continues, the prevalence

of SQLIV‟s is likely to increase. The most worrying

aspect of SQL Injection attacks is Easy to perform, even

if the developers of the application are well known

about this type of attacks. The basic idea behind in this

attack is that the attacker will copy the data that a web

application sends to the database aiming at the

modification of SQL Query that will be executed by

DBMS software. Input validation issues can allow the

attackers to gain complete access to such databases.

 The Technologies vulnerable to SQL Injection

attacks are Dynamic Scripting Languages like ASP,

ASP.net, PHP, JSP, CGI etc. In addition, all types of

database have been severely vulnerable in such type of

SQL Injection Attacks. Researchers have proposed a

different techniques to provide a solution for SQLIAs

(SQL Injection attacks), but many of these solutions

have limitations that affect their effectiveness and

practicality. Researchers have indicated that solution to

Krishna Pratap et. al.

441 | P a g e

these types of attacks may be based on defense coding

practices. But it's not efficient because of three reasons.

First, it is very hard to bring out a rigorous defensive

coding discipline. Second, many solutions based on

defensive coding address only a subset of the possible

attacks. Third, legacy software poses a particularly

difficult problem because of the cost and complexity of

retrofitting existing code so that it is compliant with

defensive coding practices. In this work, an attempt has

been made to increase the efficiency of the above

techniques by a combinatorial approach for protecting

web application against SQL Injection attacks.

 The remainder of the paper is organized as

follows: Section2 contains background and related

work; Section3 describes our proposed approach.

Section4 describes the conclusion and future work.

II. BACKGROUND AND RELATED WORK

SQLIA‟s is one of the main issues in database

security, which easily affects the database without the

knowledge of both the user and the database

administrator. It is a technique that may corrupt the

information in the database i.e. deletes or changes the

full database or records or tables. To exploit the

database system, some vulnerable web applications [9]

are used by the attackers.

These attacks not only make the attacker to

breach the security and steal the entire content of the

database but also, to make arbitrary changes to both the

database schema and the contents. SQL injection attack

could not be realized about information compromization

until long after the attack has passed in many scenarios, the

victims are unaware that their confidential data has been

stolen or compromised. SQL Injection attacks can be

performed by attackers [12] just with the help of simple

web browser. The following section describes the attacks

with an example.

Generally the Authenticated users have username

and password such as,

Username: john

Password: 1000

The SQL Query format will be as follows,

Select
 *

 from table where username='john' and

pwd='1000';

The above query then retrieves the needed records from

the database where username and pwd is available in the

database or it shows some error messages to the

browsers. The unauthorized users or the attackers inject

the following SQL Injection in this field:

Username: john

Password: 1000

Then the dynamic SQL query constructed from the

above information is,

Select * from table where username='john' and

pwd=1000;

In this SQL statement, the actual username is „john‟.

And the modified name did by the attackers while

generating the Query is „john‟. Here both the words are

same considering whether they are characters or not. But

the first word „john‟ is fully taken in the font “Times

new Roman” format, Where as the modified name given

by the attacker, „john‟ includes the alphabets „j‟, „o‟, „n‟

in „Times new Roman‟ format, and the alphabet „h‟ in

“Wide Latin” format. Hence, the attacker will now

easily attack the database just by transferring the

malicious code. Here both the usernames are set of

characters so that even by using the Character Level

Tainting, all the characters in the given query is matched

with the strings in the Meta Strings Library and then the

query was sent to the database. Here the Character Level

Tainting can‟t be able to find the type of malicious code

that was sent in different fonts because of having no

information on the consideration of the font formats of

the sent query and hence it performs the operation. The

result of this query performs SQL Injection attacks.

A. Exploiting INSERT

 The Web Sites like Banking, when registration, it

allows the user to feed inputs and store it. INSERT

statement allows the user input to store in the back end.

The misuse of INSERT statements by the attacker results

in many rows in the database with corrupt data.

B. Exploiting SELECT

 SQL injection is not only a straight forward attack

but also it has some background tricky attack is present.

Most of the time attackers would see some error message

and will have to reverse engineer their queries.

C. Authorization diversions (SQL manipulation)

 This attack allows the attacker access the total

information in the database [15]. The example of this

attack is discussed in the above section.

Direct Vs Informative (SQL manipulation):–

 Both Direct and informative are the types of SQL

Injection attacks in SQL manipulation. In direct attack, the

input data become part of the SQL statement formed by the

application. Attacker will change font format of the

characters in a way that the modified character that was

Font Level Tainting: Another Approach for Preventing SQL Injection Attacks

442 | P a g e

easily matched with the character in Meta Strings Library

can manipulate the SQL statement. The error message has

been returned if the injection was successful.

 In Striking injection, the injected string has the code

at the extra location (width) occupied by the modified

character in the statement. In order to manipulate the SQL

statement successfully input string must contain its

characters in different font formats which is same as the

characters in Meta Strings Library and should also contain

the malicious code at the extra location (width) occupied by

the modified character that attacks the DB whenever this

modified character is considered by the database.

D. Exploiting System Stored Procedures (Function call)

 Database uses stored procedures to perform

database Administrative operations. Attacker uses stored

procedures to corrupt the database system and it‟s a most

harmful attacks. If attacker is able to inject SQL string

successfully then attacker can make use of these stored

procedures. Access to these procedures depends on the

privileges of the user on the database.

SELECT usrid, details, username from user where

username like „john‟; to execmaster.dbo.xp_cmdshell

"dir.

 The above injected SQL query will then enters

easily into the details of “John” in the database and can

easily make transactions or can perform malicious

actions, execute the operating system command DIR.The

following subsection describes in details about the related

works based on SQL Injection Attacks. A number of

researches had been taken to provide solutions for SQL

Injection Attacks.

R. Ezumalai and G. Aghila [1], has proposed the character

level tainting approach for preventing SQLIAs. It includes

three modules to detect the security issues. 1. Monitoring

module has got the statement from the web application

which can decide whether it can send the statement to

database for execution. 2. Analysis module uses

Hirschberg algorithm to compare the statement from the

specifications. 3. Specifications comprise the predefined

keywords and send it to analyze module for

comparisons. It performs well for finding the malicious

code if any, by checking the given statement in terms of

characters. If it founds any wrong character other than the

specified, it just blocks the query and gives the information

of the type of the attack.

 Konstantin‟s et al [3], proposed a mechanism to

detect SQL injection with novel-specification based

methodology. This approach utilizes specifications that

define the intended syntactic structure of SQL queries

that are produced and executed by the web application.

The main disadvantage of this paper is, to compare the

SQL statement with the predefined structure at run time,

the computational time is overhead.

 Wassermann and Su [6], proposed a static

framework to analyze and filter the user inputs. According

to them, their approach has restricted to discover only

logic-based attacks. I.e. Attacks that always result in true

or false SQL statements.

 Marco Cova et al 19], propose a mechanism to the

anomaly-based detection of attacks against web

applications. Swaddler analyzes the internal state of a web

application and finds the relationships between the

application‟s critical execution points and the application's

internal state. By doing this, he is able to identify attacks

that attempt to bring an application in an inconsistent,

anomalous state, such as violations of the intended

workflow of a web application. The main disadvantage is,

as the number of executed basic blocks increases, the

overhead grows linearly due to instrumentation and

detection overhead associated with each basic block in the

program.

 Xiang Fu et al [1], propose the design of a static

analysis framework (called SAFELI) for identifying SIA

(SQL Injection attacks) vulnerabilities at compile time

which statically monitors the MSIL (Microsoft

Symbolic intermediate language) byte code of an

ASP.NET Web application, using symbolic execution.

SAFELI can analyze the source code information and will

be able to identify very delicate vulnerabilities that can‟t

be discovered by black-box vulnerability scanners. The

disadvantage of this work is that this approach can

discover the SQL injection attacks only on Microsoft based

product.

 Livshits and Lam [21], proposed another static

analysis approach for finding the SQL injection using

vulnerability pattern approach. Vulnerability patterns are

described here in this approach. The main issues of this

method, is that it can‟t detect the SQL injection attacks

patterns that are not known beforehand.

 William G.J. Halfond and Alessandro Orso [2],

proposed a mechanism to prevent SQL injection at run

time. AMNESIA uses a model based approach to detect

illegal queries before it sends for execution to database.

In its dynamic method, the technique uses run time

monitoring method to inspect each and every query

which is passed to its techniques. Here the AMNESIA

requires the modification of the web application's source

code. They also describes the mechanism to keep track of

the positive taints and negative taints which had outlined

a new automated technique for preventing SQLIAs based

on the novel concept of positive tainting and on flexible

syntax-aware evaluation. It can check the SQL statement

with these taints and will generate the alarm, if it finds any

problems. The advantage of this mechanism is it imposes a

low execution overhead, and it doesn‟t require any

modification of the run time system even at application

level.

Krishna Pratap et. al.

443 | P a g e

 Buehrer et al [12], proposed a static mechanism that

filters the SQL Injection. By comparing the parse tree of a

SQL statement before and after input, the SQL statements

allow the SQL statements to execute only when the parse

trees match. Their study on using one real world web

application and their application of SQLGUARD solution

to each application has stopped all of the SQLIAs without

generating any false positive results, and their solution

required the developer to rewrite all of their SQL code to

use their custom libraries

 Along with them, many authors have discussed much

number of various techniques to prevent SQL Injection

attacks through many ways in static and dynamic analysis

and also in DBMS auditing methods. But all these

methods reported to have a various pros and cons of its

own proposal. In this paper, a new attempt has been

proposed and worked out against SQL Injection attacks.

III. OUR APPROACH

Our approach against SQLIAs is based on Declarative

method approach that easily addresses the security

problems related to input validation. This approach

describes two modules which are used to detect the

security issues. Efficacy module has got the statement

from the web application which includes both the

Hirschberg Algorithm to analyze the Statement into the

set of characters, and Schatten algorithm to compare the

each character with respect to the Desenlace module.

After the each character in the statement is scrutinized, if

it finds any suspicious activity like finding the characters

that are given in different formats, it acts as an active agent

to stop the transaction and audit the attacks.

Desenlace module includes the Meta strings library

which comprises the predefined keywords and is updated

with new type of information in terms of the font details

including the font format, font color, and font resolution,

font size for each and every character. If both Efficacy

module and Quest module has satisfied, it provides the

complete transaction. The following figure 1 clearly

portrays the architecture of the system to prevent the SQL

Injection attacks using this new approach. The following

section outlines each module's work in detail.

 Figure 1: Font Level tainting approach for Preventing

SALIAs

A. Desenlace Module:

 Desenlace module includes the Meta strings library

which comprises the predefined keywords and is updated

with new type of information in terms of the font details

including the font format, font color, and font resolution,

font size for each and every character.

B. Efficacy Module:

 In Efficacy module, it gets an input from the web

application and it compares the statement with the Meta

strings library included in the Desenlace Module, if

founds any error message it attempts to block the query. It

uses the Hirschberg algorithm to analyze the statement

into set of characters. It uses Schatten algorithm for

comparison of each character with Meta Strings library

and prevent SQL Injection attacks if found. The time

complexity of this algorithm is O (nm) and space

complexity is O (min (nm)).

Schatten Algorithm:

Begin

1. Consider a statement „Qi‟ from the Web

application.

2. Consider the character „Ci‟ of „Qi‟.

3. Consider a statement „Qj‟ from the Meta Strings

Library.

4. Consider the character „Cj‟ of ‟Qj‟.

5. For i=j values, compare Ci (Qi) with Cj (Qj).

6. If Ci (Qi)==Cj (Qj).

7. Then execute the Ci.

8. End-if

9. Increment i, j values.

10. Go to step-5

11. If Ci(Qi)!=Cj(Qj).

12. Then block the Statement

13. Alert the Generation

14. Report the Result

15. End-if

End

C. SQL Injection code

Select * from table where username='john' and the

pwd=1000;

 The algorithm describes the way how we follow the

procedure for preventing the SQL Injection Attacks.

Let, the generated query Statement be = „Qi‟,

The Statement in the Updated Meta Strings Library=

„Qj‟.

The alphabet of the generated query „Qi‟ = „Ci‟,

 The alphabet of the String „Qi‟ in Meta String

Library=„Ci‟.

Font Level Tainting: Another Approach for Preventing SQL Injection Attacks

444 | P a g e

 Let i & j be the position values of both the

generated and actual statement.

The Meta String Library is now to be updated

including the Font details of a specific character, C of a

statement Q. Let us first consider the Statement „Qi‟ from

the Web application, and we choose a character „Ci‟ of

„Qi‟. Now „Ci‟ is to be compared with the „Cj‟ of the

actual statement „Qj‟ included in the Meta Strings

Library, in terms of their Font Details. If both the

Characters are matched, i.e. Ci(Qi) ==Cj(Qj), then the

character is considered as secure and was sent to the

database server for the further transactions. This process

repeats till the total statement is accepted.

If at any position, when Ci (Qi)! =Cj (Qj), then the

character is to be considered in a way that it is in

different font and hence the total statement should be

blocked. Further the Details of the Prevention are to be

reported. Comparing to Hirschberg algorithm, this

approach is advanced as it considers the font formats

along with the strings for checking; where as Hirschberg

principle is unable to check the font details initially.

To be efficient with this approach, all the web pages

that are developed along the Internet World have to

consider a font format universally; So that it can reduce

the chance of un-authorized attacks using malicious

codes. In the real world, different font formats are

included in developing a web page. It is user friendly to

the Developers. But it may be also an alternate way to

attack the database of the server. So by using this

approach, web page is dynamically developed.

D. Dbms Quest

DBMS Quest enables DBA‟s to position the usage of

database resources and authority [11]. When Quest is

enabled, the DBMS will produce a trail checking of

database operations, which in turn the each checked

database operation produces a trail of checking the

information. It includes the details on what database

object was impacted, who & when performed the

operation.

Depending on the level of Quests supported by the

DBMS, the data that was actually changed was recorded.

But it has some limited functionality to predict the

attacks. It is very useful to find that what type of

operation has been made on prevention of attacks. For

example End user is a customer that he can log on to the

bank and he can see his personal or his academic record

of Transactions and money details. Only option given to

the users is to check their information. i.e. (Select

operation) Instead of select operation, any deletion or

update operation is made; attackers could login in to the

system and to do some malicious actions, like transforming

the money to their accounts.

 So this Quest method try to block not only SQL

Injection attacks and also some other attacks [18]. The

restriction of this DBMS Quest method is to prevent the

attackers view some other records, that select operation

has been made. It never generates any alarms. Signature

based method itself work effectively against SQL Injection

attacks well and also this DBMS Quest also provides an

support to this method to work effectively against SQL

Injection attacks. The Integrated system is under

development and the partial results shows encouraging

output.

IV. CONCLUSION

This paper presented a highly automated

approach for protecting Web applications from SQLIAs.

Our approach consists of, Updating of Meta Strings library,

Using Schatten algorithm to compare the given statement

with updated Meta strings library, find out the SQL Injection

attacks. Using DBMS Quest methods to find out the

transactions and reports the generation in case of SQL

injection attacks.

Schatten algorithm is used to detect the SQL

Injection attacks in order to reduce the time and space

complexity and it provides the complete execution after

analyzing the DBMS Quest. Our approach also provides

advantages over the many existing techniques

environments, reduces the Time and Space complexities.

Moreover, it requires no modification of the runtime

system as it is defined at the application level, and hence

imposes a low execution overhead.

REFERENCES

[1] R.Ezumalai, G.Aghila‟s “Combinatorial approach for preventing

SQL Injection attacks”, 2009 IEEE International Advance
Computing Conference (IACC 2009) Patiala, India, 6-7, March 2009.

[2] William G.J. Halfond, Alessandro Orso, PanagiotisManolios,
"WASP: Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation", IEEE Transaction of Software

Engineering Vol 34, Nol, January/February 2008.
[3] Konstantinos Kemalis and Theodoros Tzouramanis, "Specification

based approach on SQL Injection detection", ACM, 2008.

[4] Stephen Thomas and Laurie Williams "Using Automated Fix
Generation to Secure SQL Statements", International workshop on

Software Engineering and secure system ", IEEE, 2006.

[5] V. Benjamin Livshits and Monica S. Lam, "Finding Security
Vulnerabilities in Java Applications with Static Analysis", ACM,

2005.

[6] Z. Su and G. Wassermann, "The Essence of Command Injection
Attacks in Web Applications", 33rd ACM SIGPLAN, SIGACT

Symposium on Principles of Programming Languages,

Charleston, South Carolina, USA, 2006, pp. 372-382.
[7] Sruthi Bandhakavi, "CANDID: Preventing SQL Injection Attacks

using Dynamic Candidate Evaluations", ACM,

2007.”Combinatorial Approach for Preventing SQL Injection
Attacks”

[8] Ashish kamra, Elisa Bertino, Guy Lebanon, "Mechanisms for

database intrusion detection and response", Data security &
privacy, Pages 31-36, ACM, 2008.

[9] Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.

"Securing Web Application Code by Static Analysis and Runtime
Protection", In Proc. Of the 13th Intl. World Wide Web

Conference (WWW 04), pages 40-52, May 2004.

[10] David Geer, "Malicious Bots Threaten Network Security", IEEE,

Krishna Pratap et. al.

445 | P a g e

Oct 8, 2008.
[11] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, "A Static

Analysis Framework for Detecting SQL Injection Vulnerabilities",

IEEE Transaction of computer software and application
conference, 2007.

[12] G.T. Buehrer, B.W.Weide and P.A.G. Sivilotti, "Using Parse

tree validation to prevent SQL Injection attacks", In proc. Of
the 5thInternational Workshop on Software Engineering and

Middleware (SEM'056), Pages 106-113, Sep. 2005.

[13] W.G. J. Halfond and A. Orso, “Combining Static Analysis and
Run time monitoring to counter SQL Injection attacks", 3rd

International workshop on Dynamic Analysis, St. Louis, Missouri,

2005, pp.1.
[14] Christina Yip Chung, “DEMIDS: A Misuse Detection System for

Database Systems", Integrity and internal control information

systems, Pages: 159 - 178, ACM, 2008.
[15] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A Static Analysis

tool for detecting web application vulnerability", in 2006 IEEE

Symposium on Security and Privacy, May 2006.
[16] O. Maor and A. Shulman, "SQL Injection Signature Evasion",

White paper,Imperva, Apr 2004.

[17] Nguyen-tuong, S. Guarnieri, D. Greene, J.Shirley, and D. Evans,
"Automatically hardening web applications use Precise Tainting",

In Twentieth IFIP Intl, Information security conference (SEC

2005), May 2005.
[18] R. McClure and I. Kruger, "SQL DOM: Compile Time Checking of

Dynamic SQL Statements", Inproc of the 27th Int. Conference on

Software engineering (ICSE 05), pages 88-96, May 2005.
[19] Xin Jin, Sylvia Losborn, "Architecture for data collection in

database intrusion detection system", Secure data management,

Springer link, 2007.
[20] Mehdi Kiani, Andrew Clark, George Mohay, "Evaluation of

Anomaly Based Character Distribution Models in the Detection of

SQL Injection Attacks", Third International Conference on
Availability, Reliability and Security - Volume 00, , Issue, 4-7

Page(s):47-55, IEEE, March 2008. [21] V.B. Livshits and M.S.

Lam, "Finding Security vulnerability in java Applications with
static analysis", In proceedings of the 14th Use nix Security

Symposium, Aug 2005.

[21] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and

Giovanni vigna, “Swaddler: An approach for the anamoly based

character distribution models in the detection of SQL Injection

attacks", Recent Advances in Intrusion Detection System, Pages
63-86, Springer link, 2007.

