
 International Journal of Computer Applications in Engineering Sciences (IJCAES) [VOL I, ISSUE I, MARCH 2011]

Page | 1

A Software Engineering Approach for

Vulnerability Analysis
D. Rakesh

1
, R. Vignesh

2

Department of Computer Science and Engineering

 Sri Sairam Engineering College, Anna University

 Chennai, India

{1drakesh,2vigneshrr}@live.com

Abstract- Due to the increasing dependency on networked

computer system, it is important to make a network

reliable and dependent. This is even more relevant as new

threats of attack are constantly being revealed,

compromising the security of systems. This paper

addresses this problem by presenting an attack injection

methodology for the automatic discovery of vulnerabilities

in software components. The proposed methodology,

implemented in XDoS & TCP/IP, follows an approach

similar to hackers and security analysts to discover

vulnerabilities in network-connected servers. To assess the

usefulness of this approach, several attack injections are

made in POP and IMAP servers. XDetector uses a

specification of the server’s communication protocol. Then,

while it injects these attacks through the network, it

monitors the execution of the server in the target system

and the responses returned to the clients. If any

abnormality is detected, then the corresponding client’s

connection is terminated by the XDetector to prevent any

damage to the server and the faulty client can be made

secure using traditional debugging tools.

Keywords- Software Engineering, Attack Injection, Testing

and Debugging, XDoS, POP & IMAP.

I. INTRODUCTION

 Reliance on computer systems for everyday life

activities has increased over the years, as more and more

tasks are accomplished with their help. The

advancements in software development have provided

us with an increasing number of useful applications with

an ever improving functionality. These enhancements,

however, are achieved in most cases with larger and

more complex projects, which require the coordination

of several teams. Third party software, such as COTS

components, is frequently utilized to speed up

development, even though in many cases it is poorly

documented and supported. In the background, the ever-

present trade-off between thorough testing and time to

deployment affects the quality of the software. These

factors, allied to the current development and testing

methodologies, have proven to be inadequate and

insufficient to construct dependable software. Every day,

new vulnerabilities are found in what was previously

believed to be secure applications, unlocking new risks

and security hazards that can be exploited by malicious

adversaries.

 The paper describes an attack injection methodology

that can be used for vulnerability detection and removal.

It mimics the behaviour of an adversary by injecting

attacks against a target system while inspecting its

execution to determine if any of the attacks has caused a

failure. The observation of some abnormal behaviour

indicates that an attack was successful in triggering an

existing flaw. After the identification of the problem,

traditional debugging techniques can be employed, for

instance, by examining the application’s control flow

while processing the offending attacks, to locate the

origin of the vulnerability and to proceed with its

elimination. It is implemented by using an XML Denial

Of Service (XDoS) attack in a common network using

TCP/IP. To demonstrate the usefulness of our approach,

58 attack injection experiments with 16 e-mail servers

running POP and IMAP services have been conducted.

II. USING ATTACKS TO FIND VULNERABILITIES

 Vulnerabilities are usually caused by subtle

anomalies that only emerge in such unusual

circumstances that were not even contemplated in test

design. They tend to elude the traditional software

testing methods, mainly because conventional test cases

mostly do not cover all of the obscure and unexpected

usage scenarios. Hence, vulnerability is typically found

Fig 1a- Attack Injection Methodology

 International Journal of Computer Applications in Engineering Sciences (IJCAES) [VOL I, ISSUE I, MARCH 2011]

Page | 2

either by accident or by attackers or special tiger teams

(also called penetration testers) who perform thorough

security audits. The typical process of manually

searching for new vulnerabilities is often slow and

tedious specifically, the source code must be carefully

scrutinized for security flaws or the application has to be

exhaustively experimented with several kinds of input

(e.g., unusual and random data, or more elaborate input

based on previously known exploits) looking for

problems during its execution.

 Fig.1a shows a model of a component with existing

vulnerabilities. Boxes in the figure represent the

different modules or software layers that compose the

component, with the holes symbolizing access being

allowed (as intended by the developers or inadvertently

through some vulnerability). Lines depict the interaction

between the various layers. The same rationale can be

applied recursively to any abstraction level of a

component, from the smallest subcomponent to more

complex and larger systems, terms component and

system can be used interchangeably.

 The external access to the component is provided

through a known Interface Access, which receives the

input arriving, for instance, in network packets or disk

files, and eventually returns some output. Whether the

component is a simple function that performs a specific

task or a complex system, its intended functionality is,

or should be, protected by Input Data Validation layers.

These additional layers of control logic are supposed to

regulate the interaction with the component, allowing it

to execute the service specification only when the

appropriate circumstances are present (e.g., if the client

messages are in compliance with the protocol

specification or if the procedure parameters are within

some bounds). In order to achieve this goal, these layers

are responsible for the parsing and validation of the

arriving data. The purpose of a component is defined by

its implemented functionality. This last layer

corresponds to the implementation of the service

specification of the component, i.e., it is the sequence of

instructions that controls its behaviour to accomplish

some well-defined objective, such as responding to

client requests according to some standard network

protocol. By accessing the interface, an adversary may

persistently

Fig 1b- Attack Injection Methodology

look for vulnerabilities by stressing the component with

a dependable system should continue to operate

correctly, even in the presence of these faults, i.e., it

should keep executing in accordance with the service

specification. However, if one of these attacks causes an
abnormal behaviour of the component, it suggests the

presence of vulnerability somewhere on the execution

path of its processing logic. Vulnerabilities are faults

caused by design, configuration, or implementation

mistakes, susceptible to being exploited by an attack to

perform some unintended and usually illegal activity.

The component, failing to properly process the

offending attack, enables the attacker to access the

component in a way unpredicted by the designers or

developers, causing an intrusion. This further step

toward failure is normally succeeded by the production

of an erroneous state in the system (e.g., a root shell).

Consequently, if nothing is done to handle the error (e.g.,

prevent the execution of commands in the root shell),

the system will fail.

III. THE ATTACK INJECTION METHODOLOGY

 The attack injection methodology adapts and extends

classical fault injection techniques to look for security

vulnerabilities. The methodology can be a useful asset in

increasing the dependability of computer systems

because it addresses the discovery of this elusive class

of faults. An attack injection tool implementing the

methodology mimics the behaviour of an external

adversary that systematically attacks a component,

hereafter referred to as the target system, while

monitoring its behaviour. An illustration of the main

actions that need to be performed by such a tool is

represented in Fig. 1b.

 First, several attacks are generated in order to fully

evaluate the target system’s intended functionality (step

1). Restrictions apply on absence of vulnerabilities; the

attacks have to be exhaustive and should look for as

many classes of flaws as possible. It is expected that the

majority of the attacks are deflected by the input data

validation mechanisms, but others will be allowed to

proceed further along the execution path, testing deeper

into the component. Each attack is a single test case that

 International Journal of Computer Applications in Engineering Sciences (IJCAES) [VOL I, ISSUE I, MARCH 2011]

Page | 3

exercises some part of the target system, and the quality

of these tests determines the coverage of the detectable

vulnerabilities. Ideally, one would like to build test cases

that would not only exercise all reachable computer

instructions but also try them with every possible

instance of input.

 This goal, however, is unfeasible for most systems

due to the amount of effort necessary to generate the

various combinations of input data and then to execute

them. The effort can be decreased by resorting to the

analysis of the source code, and by manually creating

good test cases. This approach requires a great deal of

experience and acuteness from the test designers, and

even then, some vulnerability can be missed altogether.

In addition, source code might be unavailable because it

is common practice to reuse general purpose

components developed by third parties.

 To overcome these limitations and to automate the

process of discovering vulnerabilities, this paper

proposes a method of generating a large number of test

cases from a specification of the component’s interface.

The tool should then carry out the attacks (step 2) while

monitoring how the state of the component is evolving,

looking for any unexpected behaviour (step 3).

Depending on its monitoring capabilities, the tool could

examine the target system’s outputs, its allocated system

resources, or even the last system calls it executed.

Whenever an error or failure is observed, it indicates

that a new vulnerability has potentially been discovered.

For instance, a vulnerability is likely to exist in the

target system if it crashes during (or after) the injection

of an attack—this attack at least compromises the

availability of the system.

 Likewise, if what is observed is the abnormal

creation of a large file, this can eventually lead to disk

exhaustion and subsequent denial-of-service, so it

should be further investigated. The collected evidence

provides useful information about the location of the

vulnerability and supports its subsequent removal.

System calls and the component responses, along with

the offending attack, can identify the protocol state and

the execution path to find the flaw more accurately. If

locating and removing the vulnerability is unfeasible or

a more immediate action is required, for instance, if the

target system is a COTS component or a fundamental

business-related application, the attack description could

be used to take preventive actions, such as adding new

firewall rules or IDS filters. By blocking similar attacks,

the vulnerability can no longer be exploited, thus

improving the system’s dependability.

IV. MODULES

 The proposed methodology implemented in XDoS

and TCP/IP, follows an approach similar to actors and

security analysis to discover vulnerability in network

connected server. XDetector uses a specification of the

server’s communication protocol. Then, while it injects

these attacks through network monitors the execution of

the server in the target system and the response is

returned to the client. It remains passive when there is

no fault but it terminates the connection of the

corresponding client with the server.

Fig 2-Architecture Diagram

A.XDoS and TCP/IP

 The mainstay of the proposed framework is to create

an Open Grid Services Architecture (OGSA) by

employing Service Oriented Traceback Architecture

(SOTA) in Conjunction with a filter defense system

(XDetector) for an effective defense against XDoS. In

fact, headlines about these new attacks can be seen in

the coming days and months. These new attacks have

been referred by researchers as XDoS (XML based

DoS).The attacker would chose this new form of Denial

of Service attack due to its simpler and devastating

form against Web services. Each Client which is

connected with the server is provided with an interface

id, which uniquely identifies each client.

 The Open Grid Services Architecture (OGSA)

describes architecture for a service-oriented grid

computing environment for business and scientific use,

developed within the Global Grid Forum (GGF). OGSA

is based on several other Web service technologies,

notably WSDL and SOAP, but it aims to be largely

agnostic in relation to the transport-level handling of

data. Simple Object Access Protocol (SOAP) is defined

to be a protocol specification for exchanging structured

information in the implementation of Web Services in

computer. Service Oriented Trace back Architecture

(SOTA) provides a framework to be able to identify the

source of an attack. This is accomplished by deploying

http://en.wikipedia.org/wiki/Protocol_(computing)

 International Journal of Computer Applications in Engineering Sciences (IJCAES) [VOL I, ISSUE I, MARCH 2011]

Page | 4

our defense system at distributed routers, in order to

examine the incoming SOAP messages and place our

own SOAP header. By this method, the new SOAP

header information can be used to trace back through the

network to determine the source of the attack.

According to our experimental performance evaluations,

SOTA is found to be quite scalable, simple and quite

effective at identifying the source.

 Once, the server identifies the attack. It checks

first, whether were it comes from based on a ID

information and it sends the response to the previous

router. Over there it checks which source owns this ID

based on TCP/IP to prevent the attack.

B. Attack Injector

 The attack injection methodology adapts and

extends classical fault injection techniques to look for

security vulnerabilities. The methodology can be a

useful asset in increasing the dependability of computer

systems because it addresses the discovery of this

elusive class of faults. An attack injection tool

implementing the methodology mimics the behavior of

an external adversary that systematically attacks a

component, hereafter referred to as the target system,

while monitoring its behavior. An illustration of the

main actions that need to be performed by such a tool is

represented in figure 2.

Fig 3-Transition Diagram

C. Target System and Monitor

 The Target System is the entire software and

hardware components that comprise the target

application and its execution environment, including the

operating system, the software libraries, and the system

resources. The Network Server is typically a service that

can be queried remotely from client programs. The

target application uses a well-known protocol to

communicate with the clients, and these clients can

carry out attacks by transmitting erroneous packets. If

the packets are not correctly processed, the target can

suffer various kinds of errors with distinct

consequences, ranging, for instance, from a slowdown to

a crash. The Network Server Protocol Specification is a

graphical user interface component that supports the

specification of the communication protocol used by the

server.

 This specification is utilized by the Attack to

produce a large number of test cases. The Attack

Injector is responsible for the actual execution of the

attacks by transmitting malicious packets to the server.

It also receives the responses returned by the target and

the remote execution profile collected by the Monitor.

Some analysis on the information acquired during the

attack is also performed to determine if vulnerability

was exposed.

V. CONCLUSION

 A methodology and a tool for the discovery of

vulnerabilities in server applications is presented, which

are based on the behavior of malicious adversaries.

XDetector has been used to detect XDoS vulnerabilities

in common network protocols such as TCP/IP. It detects

vulnerabilities in clients and disconnects the

corresponding client from the server to protect it against

any attacks. The transition diagram for the same is

shown in figure 3.

REFERENCES

[1] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell,

Y.Deswarte, R. Stroud, and I. Welch, “Intrusion-Tolerant
Middleware:The Road to Automatic Security,” IEEE Security

and Privacy,vol. 4, no. 4, pp. 54-62, July/Aug. 1996.

[2] B. Beizer, Software Testing Techniques, second ed. Van
Nostrand Reinhold, 1990.

[3] N. Neves, J. Antunes, M. Correia, P. Verissimo, and R.

Neves,“Using Attack Injection to Discover New Vulnerabilities,”

Proc.

 Int’l Conf. Dependable Systems and Networks, June 2006.
[4] J. Myers and M. Rose, “Post Office Protocol Version 3,” RFC

1939 (Standard), updated by RFCs 1957, 2449, May 1996.
[5] M. Crispin, “Internet Message Access Protocol Version

4rev1,”Internet Eng. Task Force, RFC 3501, Mar. 2003.

[6] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell,
“Fault Injection and Dependability Evaluation of Fault-Tolerant

Systems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913-923,

Aug. 1993.
[7] M.-C. Hsueh and T.K. Tsai, “Fault Injection Techniques and

Tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 1997.

[8] J. Carreira, H. Madeira, and J.G. Silva, “Xception: Software
Fault Injection and Monitoring in Processor Functional Units,”

Proc. Int’l Working Conf. Dependable Computing for Critical

Applications,pp. 135-149, Jan. 1995.
[9] T.K. Tsai and R.K. Iyer, “Measuring Fault Tolerance with the

FTAPE Fault Injection Tool,” Proc. Int’l Conf. Modeling

 International Journal of Computer Applications in Engineering Sciences (IJCAES) [VOL I, ISSUE I, MARCH 2011]

Page | 5

Techniques and Tools for Computer Performance Evaluation,
pp. 26-40, 1995.

[10] J. Christmansson and R. Chillarege, “Generation of an Error

Set That Emulates Software Faults,” Proc. Int’l Symp. Fault-
Tolerant Computing, pp. 304-313, June 1996.

[11] J. Dura˜es and H. Madeira, “Definition of Software Fault

Emulation Operators: A Field Data Study,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 105-114, June 2003

